Research


Latest SCI publications

Latest Projects

Research project (§ 26 & § 27)
Duration : 2017-09-01 - 2019-08-31

Molecular faecal pollution diagnostics, based on the detection of genetic faecal microbial source tracking (MST) markers, is about to revolutionise water quality testing. Such applications have been mainly focusing within the fields of recreational water quality monitoring, shellfish production, and maximum daily load monitoring. Scientific knowledge on the application of genetic faecal MST marker diagnostics, to support drinking water supply management and water safety planning, is hardly available yet. The proposed translational research project is going to establish the basic scientific knowledge needed to apply and further develop cutting edge genetic faecal marker diagnostics for quality testing to support water safety plans of drinking water supplies of tomorrow. Genetic faecal MST markers are supposed to extend current monitoring practices based on standard faecal indicator bacteria (SFIB) E. coli and enterococci in order to identify potential contamination sources for elimination or minimisation, and, to bridge the gap between traditional faecal pollution monitoring and microbial risk assessment. However, molecular diagnostics with adequate faecal-source specificity and faecal –source sensitivity is considered a key prerequisite for these applications. A new tiered application strategy for drinking water resources monitoring, based on the combination of bacterial and mitochondrial genetic faecal MST markers, is proposed. The new strategy will systematically be evaluated by means of relevant faecal pollution sources, representative water resources in Lower Austria, and important disinfection processes. To enable comparisons to traditional methods investigations will be complemented by SFIB and total cell count analysis. Chemical markers will be evaluated to support genetic MST diagnostics. The topic “Intelligent Indication Systems and Diagnostics” has been defined as prioritised research area within the recent FTI strategy (Programme for Research, Technology & Innovation for Lower Austria). The submitted research proposal is thus directly contributing to the adopted FTI strategy. The translational research project will stimulate sustainable collaborations between the Karl Landsteiner University, the well-established Center for Analytic Chemistry at IFA Tulln and the Interuniversity Cooperation Centre for Water and Health, a research centre to pioneer cutting edge water quality research. Furthermore, the project will directly collaborate with EVN Wasser GesmbH, the leading Lower Austrian drinking water supplier. The project will thus directly establish links between cutting edge water research and activities of a leading drinking water supplier to support the realization of water safety management of the future. Joint collaboration between these excellent partners in research and management will contribute to a further establishment of Lower Austria as a leading region in the water sector within the Danube and Central European Region.
Research project (§ 26 & § 27)
Duration : 2015-01-01 - 2015-09-30

On the 1st of January 2015, a new project submission and management system for the project financed by Land Niederösterreich comes into effect. The present proposal was written to continue and complete the project: “Development and characterization of multi-functional bio-based composites” through a new project, also to comply with the new European regulations. The proposed time-period is 01/01/2015 till 30/09/2015. The new project is designed to continue the financial support for Miss Pauline Rivière PhD study, which has started in October 2012 within the framework of the European Regional Development Fund (EFRE) project BIOFUNK, in order to complete the ongoing PhD project.

Supervised Theses and Dissertations